Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
Russell, S., & Norvig, P. (2021). Artificial Intelligence: A Modern Approach. Pearson.
Kumar, V., Minz, S., & Verma, K. (Eds.). (2020). Intelligent Computing and Communication: Proceedings of ICICC 2019 (Vol. 2). Springer.
Moon, T. K., & Stirling, W. C. (2000). Mathematical Methods and Algorithms for Signal Processing. Prentice Hall.
Kusiak, A. (2019). Artificial Intelligence in Engineering Design. Academic Press.
Ang, K. H., Chong, G., & Li, Y. (2005). PID control system analysis, design, and technology. IEEE Transactions on Control Systems Technology, 13(4), 559-576.
MacLeod, M. D. (2019). Data-driven optimization and the future of engineering. Annual Review of Chemical and Biomolecular Engineering, 10, 31-50.
Bhatti, A. I., & Zhang, Z. (2019). A comprehensive review of data-driven optimization in chemical engineering. Processes, 7(10), 684.
Subudhi, B. N., & Biswal, S. (2020). A comprehensive review of artificial intelligence (AI) applications in renewable energy sector. Renewable and Sustainable Energy Reviews, 119, 109604.
Gandomi, A. H., & Haider, M. (2020). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 50, 257-269.
Brintrup, A., Gong, L., & Tiwari, M. K. (2018). Artificial intelligence and expert systems in aerospace manufacturing: Potential and challenges. Computers & Industrial Engineering, 116, 184-197.
Dash, S. R., & Dash, S. K. (2019). Machine learning techniques for condition monitoring of critical assets: A review. Engineering Applications of Artificial Intelligence, 87, 1-28.
Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. U Michigan Press.
Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley.
Cios, K. J., Pedrycz, W., Swiniarski, R. W., & Kurgan, L. A. (Eds.). (2007). Data mining: a knowledge discovery approach. Springer Science & Business Media.
Chong, C. Y., & Zak, S. H. (2014). An introduction to optimization (Vol. 4). John Wiley & Sons.
Schaefer, R., & Zimmermann, H. J. (1998). Artificial neural networks for pattern recognition: Advances in applied science and industrial applications. Springer Science & Business Media.
Zhang, J., & Tsang, E. C. (Eds.). (2010). Evolutionary computation in dynamic and uncertain environments. Springer Science & Business Media.
Siegel, E., & Goldenberg, J. (2016). Machine learning for healthcare: Case studies and algorithms for working with healthcare data. O'Reilly Media, Inc.
Konar, A. (2005). Artificial intelligence and soft computing: behavioral and cognitive modeling of the human brain. CRC Press.
Goh, C. K., Lin, Z., & Li, M. (2017). Handcrafted features versus transfer learning for plant disease classification. In 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 2319-2324). IEEE.
Beale, R., & Jackson, T. (1990). Neural computing: an introduction. CRC Press.
Alpaydin, E. (2020). Introduction to machine learning. MIT press.
Verma, A. K., Tiwari, M. K., & Iyer, A. (2020). A comprehensive review on application of artificial intelligence in oil and gas industry. Journal of Natural Gas Science and Engineering, 79, 103442.
Shah, D., Dongre, K., & Ratnaparkhi, S. (2017). A review on artificial intelligence techniques in fault diagnosis of induction motor. Engineering Science and Technology, an International Journal, 20(1), 287-297.
Suykens, J. A., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural processing letters, 9(3), 293-300.
Cherkassky, V., & Mulier, F. (2007). Learning from data: Concepts, theory, and methods. John Wiley & Sons.
Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.
Fu, J., Zeng, Y., & Zhou, J. (2019). Application of artificial intelligence in water quality assessment based on fuzzy comprehensive evaluation method. IEEE Access, 7, 96257-96268.
Kim, J. H., & Choi, K. S. (2020). A study on the implementation of artificial intelligence-based optimization for design development of eco-friendly concrete mixes. Sustainability, 12(3), 1081.
Chakraborty, A., & Chattopadhyay, R. (2020). Application of artificial intelligence in predicting the critical temperature of superconductors. Journal of Superconductivity and Novel Magnetism, 33(8), 2605-2610.
Goldberg, D. E. (2002). The design of innovation: Lessons from and for competent genetic algorithms. Springer Science & Business Media.
Kaveh, A., & Talatahari, S. (2010). Optimum design of skeletal structures using imperialist competitive algorithm. Computers & Structures, 88(21-22), 1220-1229.
Hagan, M. T., Demuth, H. B., Beale, M. H., & De Jesús, O. (2014). Neural network design. Martin Hagan.
Schmitt, F. (2008). Artificial neural networks: Formal models and their applications—ICANN 2008. Springer Science & Business Media.
Simpson, T. W., Poplinski, J. D., Koch, P. N., & Allen, J. K. (2001). Metamodels for computer-based engineering design: survey and recommendations. Engineering with Computers, 17(2), 129-150.
Yang, X. S. (2010). Nature-inspired metaheuristic algorithms. Luniver press.
La biblioteca en Booknet es una lista útil de libros, donde puede:
guardar sus libros favoritos
ver fácilmente las actualizaciones de todos los libros de la biblioteca
estar al tanto de las nuevas reseñas en los libros
Uso de Cookies
Con el fin de proporcionar una mejor experiencia de usuario, recopilamos y utilizamos cookies. Si continúa navegando por nuestro sitio web, acepta la recopilación y el uso de cookies.